
Copyright © <Dates> by <Authors>. All Rights Reserved.

UOS RTL Library (LIB$)
Manual

UOS RTL Library (LIB$) Manual

2 / 27

Table of contents

Introduction .. 3
Contents ... 3
Preface ... 3
LIB$... 3

Overview of LIB$... 3
LIB$ADD_RECALL .. 3
LIB$CLEAR_RECALL ... 4
LIB$CVT_FROM_INTERNAL_TIME ... 4
LIB$CVTIME .. 6
LIB$DAY_OF_WEEK ... 7
LIB$GET_COMMAND .. 7
LIB$Get_Default_File_Protection .. 8
LIB$FAO and LIB$FAOL .. 9
LIB$GET_FOREIGN .. 14
LIB$GET_INPUT .. 15
LIB$GET_RECALL .. 15
LIB$GET_RECALL_LENGTH ... 16
LIB$POP_RECALL .. 16
LIB$PUT_FORMATTED_OUTPUT ... 17
LIB$RECALL_COUNT .. 17
LIB$RUN ... 18
LIB$SEEK_FILE .. 19
LIB$SPAWN ... 19
LIB$Substitute_Wildcards .. 21
LIB$SYS_ASCTIM .. 22
LIB$SYS_FILESCAN .. 23
LIB$SYS_PARSE .. 25
LIB$SYS_GETMSG .. 26

UOS RTL Library (LIB$) Manual

3 / 27

Introduction

UOS RTL Library (LIB$) Manual
October 2023

Created with the Personal Edition of HelpNDoc: Easy CHM and documentation editor

Contents

Created with the Personal Edition of HelpNDoc: Free help authoring environment

Preface

Preface
Intended Audience

This manual is intended for application developers writing software for the UOS operating system that call
LIB$ library routines.

Created with the Personal Edition of HelpNDoc: What is a Help Authoring tool?

LIB$
The part of the manual contains descriptions of the LIB$ runtime routines.

Created with the Personal Edition of HelpNDoc: What is a Help Authoring tool?

Overview of LIB$

Overview of LIB$

This manual describes the Run-Time Library (RTL) LIB$ routines that perform general-purpose functions.

Unless otherwise specified LIB$ routines use 64-bit addresses and 64-bit integer values.

Created with the Personal Edition of HelpNDoc: Free help authoring tool

LIB$ADD_RECALL

LIB$ADD_RECALL
Add Command to Recall Buffer

This function adds a command to the command recall buffer. If the added command causes the buffer to
exceed the maximum number of commands, the oldest command is deleted from the buffer. Null
commands are not added to the buffer.

Format
LIB$ADD_RECALL command

Arguments
command

http://www.helpndoc.com
http://www.helpndoc.com/help-authoring-tool
http://www.helpauthoringsoftware.com
http://www.helpauthoringsoftware.com
http://www.helpndoc.com/help-authoring-tool

UOS RTL Library (LIB$) Manual

4 / 27

The address of a TSRB structure that indicates the command string to add.

Required Privileges
None

Affected Quotas
None

Condition Values Returned
No condition code is returned.

Created with the Personal Edition of HelpNDoc: Easily create Web Help sites

LIB$CLEAR_RECALL

LIB$CLEAR_RECALL
Clear Recall Buffer

This function removes all commands from the command recall buffer.

Format
LIB$CLEAR_RECALL

Arguments
None.

Required Privileges
None

Affected Quotas
None

Condition Values Returned
No condition code is returned.

Created with the Personal Edition of HelpNDoc: Easily create CHM Help documents

LIB$CVT_FROM_INTERNAL_TIME

LIB$CVT_FROM_INTERNAL_TIME

Converts a timestamp into human-centric values.

Format
LIB$CVT_FROM_INTERNAL_TIME result, operation {, time}

Arguments
operation

A pointer to a 64-bit integer value indicating the conversion to perform, as defined by the following:

Mneumonic Val
ue

Result
range

Description

LIB_K_MONTH_OF_YEA
R

0 1 to 12 Month: January=1

LIB_K_DAY_OF_YEAR 1 1 to 366 Day of year

LIB_K_HOUR_OF_YEAR 2 1 to 8,784 Hour of year

LIB_K_MINUTE_OF_YEA
R

3 1 to
527,040

Minute of year

LIB_K_SECOND_OF_YE 4 1 to Second of year

http://www.helpndoc.com/feature-tour
http://www.helpndoc.com/feature-tour

UOS RTL Library (LIB$) Manual

5 / 27

AR 31,622,400

LIB_K_DAY_OF_MONTH 5 1 to 31 Day of month

LIB_K_HOUR_OF_MONT
H

6 1 to 744 Hour of month

LIB_K_MINUTE_OF_MON
TH

7 1 to 44,640 Minute of month

LIB_K_SECOND_OF_MO
NTH

8 1 to
2,678,400

Second of month

LIB_K_DAY_OF_WEEK 9 1 to 7 Day of week: Monday=1

LIB_K_HOUR_OF_WEEK 10 1 to 168 Hours since midnight of previous Monday

LIB_K_MINUTE_OF_WE
EK

11 1 to 10,080 Minutes since midnight of previous
Monday

LIB_K_SECOND_OF_WE
EK

12 1 to
604,800

Seconds since midnight of previous
Monday

LIB_K_HOUR_OF_DAY 13 0 to 23 Hour of day

LIB_K_MINUTE_OF_DAY 14 0 to 1,439 Minute of day

LIB_K_SECOND_OF_DA
Y

15 0 to 86,399 Second of day

LIB_K_MINUTE_OF_HOU
R

16 0 to 59 Minute of hour

LIB_K_SECOND_OF_HO
UR

17 0 to 3,599 Second of hour

LIB_K_SECOND_OF_MIN
UTE

18 0 to 59 Second of minute

LIB_K_NANOSECOND_O
F_SECOND

19 0 to
999,999,99
9

Nanosecond of second

LIB_K_JULIAN_DATE 20 Days since 17-Nov-1858

LIB_K_DELTA_WEEKS 21 Number of whole weeks represented by
delta time.

LIB_K_DELTA_DAYS 22 Number of whole days represented by
delta time

LIB_K_DELTA_HOURS 23 Number of whole hours represented by
delta time

LIB_K_DELTA_MINUTES 24 Number of whole minutes represented by
delta time

LIB_K_DELTA_SECONDS 25 Number of whole seconds represented by
delta time

The last five conversions interpret the time as a delta time; the rest interpret the time as absolute.

result
A pointer to a 64-bit integer to receive the conversion result.

time
A pointer to a 64-bit timestamp. If 0, the current system time is used.

Description
This service returns a number which is the conversion of an absolute or delta time using the specified
operation.

Condition Values Returned

Value Meaning

SS_NORMA
L

Successful completion.

UOS RTL Library (LIB$) Manual

6 / 27

LIB_ABSTIM
REQ

Absolute time required but delta time supplied.

LIB_INVOPE
R

Invalid operation.

Created with the Personal Edition of HelpNDoc: Full-featured Kindle eBooks generator

LIB$CVTIME

LIB$CVTIME
Convert Time

Format
result = LIB$CVTIM time, format, output, buffer

Arguments
time

The address of a TSRB that points to a valid time specification in ASCII form.

format
How to format the result.

Menumonic Meaning

CVF_Absolute Absolute date/time

CVF_Comparison yyyy-mm-dd hh:mm:ss.cc format

CVF_Delta Delta format

output
Which items to return.

Menumonic Meaning

CVO_DateTime Full date and time

CVO_Date Full date

CVO_Time Full time

CVO_Hour Hour of the day

CVO_Second Second of minute

CVO_Minute Minute of hour

CVO_Hundredth Hundreths of seconds

CVO_Day Day of the month

CVO_Month Month of the year

CVO_Weekday Day of the week

CVO_Year Year

CVO_DayofYear Julian day

CVO_HourofYear Hour of the year

CVO_MinuteofYear Minute of the year

CVO_SecondofYear Second of the year

buffer
The address of a TSRB that points to where the result is to be written. The length of the result is written

http://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

UOS RTL Library (LIB$) Manual

7 / 27

to the Length field, but never more than the passed length in the structure.

Description
The specified buffer is filled with the requested information in the requested format.

Created with the Personal Edition of HelpNDoc: Single source CHM, PDF, DOC and HTML Help creation

LIB$DAY_OF_WEEK

LIB$DAY_OF_WEEK

Returns the numeric day of the week for a supplied time stamp.

Format
LIB$DAY_OF_WEEK time, result

Arguments
time

A pointer to a 64-bit timestamp. If 0, the current system time is used.

result
A pointer to a 64-bit integer to receive the day number.

Description
This service returns the number of the day of the week corresponding to the passed time. If 0 is passed
for the time, the current system time is used. The days are numbered 1 through 7, with Monday having
the value 1.

Condition Values Returned
SS_NORMAL Normal completion of service.

Created with the Personal Edition of HelpNDoc: Free HTML Help documentation generator

LIB$GET_COMMAND

LIB$GET_COMMAND
Get Command from SYS$COMMAND

This function obtains a command from the default command source (SYS$COMMAND). Commands read
by this service are added to the command recall buffer.

Format
LIB$GET_RECALL result, prompt, length

Arguments
result

Address of a TSRB structure which points to the buffer to receive the command input.

prompt
Address of a TSRB structure that points to the prompt string.

length
Address of a 64-bit integer that receives the count of bytes read.

Required Privileges
None

Affected Quotas

http://www.helpndoc.com/help-authoring-tool
http://www.helpndoc.com

UOS RTL Library (LIB$) Manual

8 / 27

None

Condition Values Returned

SS$_NORMAL The service completed successfully.

Created with the Personal Edition of HelpNDoc: News and information about help authoring tools and
software

LIB$Get_Default_File_Protection

LIB$Get_Default_File_Protection
Get default file protection

Returns the default file protection mask for a given process.

Format
LIB$Get_Default_File_Protection pid

Arguments
pid

The process ID of the process whose default file protection mask is to be returned. A value of 0
indicates to return the current process default file protection mask.

Description
This service returns the default file protection mask for the specified process. This mask is a set of 4
fields, each 4 bits, which indicate the protection for newly created files. Each field indicates protection
for a given type of user: owner, group, system, and world. The fields are laid out in the following order:

Type Access Bit Value (hex)

Owner Read 1

Owner Write 2

Owner Delete/
Control

4

Owner Execute 8

Group Read 10

Group Write 20

Group Delete/
Control

40

Group Execute 80

Syste
m

Read 100

Syste
m

Write 200

Syste
m

Delete/
Control

400

Syste
m

Execute 800

World Read 1000

World Write 2000

World Delete/
Control

4000

World Execute 8000

http://www.helpauthoringsoftware.com
http://www.helpauthoringsoftware.com

UOS RTL Library (LIB$) Manual

9 / 27

Condition codes returned

Code Meaning

SS_NONE
XPR

Specified process does not exist.

SS_NORM
AL

Normal completion of service.

Created with the Personal Edition of HelpNDoc: Easily create CHM Help documents

LIB$FAO and LIB$FAOL

LIB$FAO and LIB$FAOL
Format ASCII Output

FAO and FAOL format parameters consisting of strings and integer values, according to directives
embedded in a control string. The output is the control string with substitutions made depending upon the
embedded directives and the parameter values.

FAO can take up to 17 parameters in the function call. FAO is passed a pointer to an array of parameters.

Format
LIB_FAO control outlen outbuf {p1..p17}
LIB_FAOL control outlen outbuf parameters

Arguments
control

Pointer to SRB that points to the text to be output, together with one or more FAO directives. Each
directive begins with an exclamation point (!). To include a literal exclamation point, the !! directive must
be used. There is no limit to the size of the string or how many directives it contains. The valid directives
are listed below.

outlen
Defines the address of the maximum output buffer size (an int64) on call. On return, the actual size of
the data written to the output buffer is written to the address. Note that the output will never exceed the
value at the time the function is called.

outbuf
Defines the address of the output buffer. The converted control string is written here.

p1..p17
Up to 17 64-bit integer values that can represent actual data or pointers to string data. There must be
one value for each directive in the string. If the string requires more than are supplied, the missing
parameters are assumed to be 0. Not all directives require a parameter, and some constructs may
require up to three. Extra parameters are ignored. The parameters are processed sequentially as the
control string is processed from left to right. If more than 17 parameters are required, use the LIB_FAOL
function instead.

parameters
A pointer to an array of 64-bit integer values that can represent actual data or pointers to string data.
There must be one value for each directive in the string. If the string requires more than are supplied, the
behavior of the function is undefined, but will probably cause an error. Not all directives require a
parameter, and some constructs may require up to three. Extra parameters are ignored. The parameters
are processed sequentially as the control string is processed from left to right.

Description
FAO converts integer values into binary, octal, decimal, or hexadecimal values, and can insert strings, and

http://www.helpndoc.com/feature-tour

UOS RTL Library (LIB$) Manual

10 / 27

conditionally process directives. See the section below, describing the directives.

FAO Directives
FAO directives can appear anywhere in the control string and have the general form:
!ZZ
where the exclamation point (!) indicates the start of the directive and "ZZ" indicates a 1- or 2-character FAO
directive. All alphabetic characters in a directive must be uppercase.

Width
FAO directives optionally can have a width, using this format:
!nZZ
where "n" is the decimal value specifying the width (in characters) for the value substituted for the directive.
Example:
!3XB
This would display an integer byte values as hexadecimal (XB) with a width of 3 digits (it is zero-filled on the
left).

Repeat
FAO directives optionally can have a repeat count, using this format:
!n(ZZ)
where "n" is the decimal value specifying the number of times that the directive is to be repeated. If the
directive requires one or more parameters, sucessive parameters are used for each repetition - the same
parameter is not reused for each repetition. Example:
!3(OB)
This would display 3 integer byte values as octal (OB).

Repeat with width
You can specify both a width and a repeat count, using this format:
!n(mZZ)
where "n" is the decimal value specifying the number of times that the directive is to be repeated and "m" is
the decimal value specifying the with of the directive output, in characters. Example:
!5(10BB)
This would display five integer byte values as binary (BB), each of which is 10 characters wide.

Variable repeats and widths
You can specify either, or both, a width and a repeat count as variables by using a number sign (#) in place
of the decimal value. When such a directive is processed, the next parameter is used in place of the number
sign. Example:
!2(#BB)
This would display 2 integer byte values as binary, each of which is a number of characters wide that is
defined by the next parameter. Note that even though the directive is repeated, only a single parameter is
used for the width - the same width will be used for all iteraions.
!#(OB)
This would display a number of octal values equal to the next parameter.
!#(#OB)
This will read one parameter that will serve as the repeat count, and one more parameter for the width of
each octal value output.

Indirect parameters
All string parameters are considered to be addresses of the data. All numeric parameters are assumed to
be the actual value. A full 64-bits are required for each parameter value, even if less than 64-bits are required
by the directive (the remaining bits are ignored). However, using the indirection symbol (@) in a directive,
FAO can be made to treat a parameter as an address that contains the numeric value. Note that only the
required number of bytes are read from that address. Example:
!@UQ
In this case, the next parameter is used as an address to a quadword (64-bit) value.

FAO Directives
String Directives:

UOS RTL Library (LIB$) Manual

11 / 27

Directive Description

!AB Inserts a string. The parameter is a pointer to a TSRB structure.

!AC Inserts a string. The parameter is a pointer to a string whose first byte is the length of the
string, followed immediately by that many bytes if text.

!AD Inserts a string, with periods (.) substituted for all nonprintable ASCII codes. Two parameters
are required: the first is the length of the string and the second is the address of the string data.

!AF Inserts a string. Two parameters are required: the first is the length of the string and the second
is the address of the string data.

!AS Inserts a string. The parameter is the address of a string descriptor for a CLASS_S (static) or
CLASS_D (dynamic) string.

!AZ Inserts a string. The parameter is a pointer to a zero-terminated (ASCIZ) string.

Note: All string lengths indicate number of bytes, not number of characters.

Zero-filled Numeric Directives:

Directive Description

!BB Convert a byte value to the ASCII representation of that value in base 2. Only the low byte of
the parameter is used.

!BW Convert a word value to the ASCII representation of that value in base 2. Only the lower two
bytes of the parameter are used.

!BL Convert a longword value to the ASCII representation of that value in base 2. Only the lower four
bytes of the parameter are used.

!BQ Convert a quadword value to the ASCII representation of that value in base 2.

!OB Convert a byte value to the ASCII representation of that value in base 8. Only the low byte of
the parameter is used.

!OW Convert a word value to the ASCII representation of that value in base 8. Only the lower two
bytes of the parameter are used.

!OL Convert a longword value to the ASCII representation of that value in base 8. Only the lower four
bytes of the parameter are used.

!OQ Convert a quadword value to the ASCII representation of that value in base 8.

!OA Same as !OQ.

!OI Same as !OL.

!OH Same as !OQ.

!OJ Same as !OQ.

!XB Convert a byte value to the ASCII representation of that value in base 16. Only the low byte of
the parameter is used.

!XW Convert a word value to the ASCII representation of that value in base 16. Only the lower two
bytes of the parameter are used.

!XL Convert a longword value to the ASCII representation of that value in base 16. Only the lower
four bytes of the parameter are used.

!XQ Convert a quadword value to the ASCII representation of that value in base 16.

!XA Same as !XQ.

!XI Same as !XL.

!XH Same as !XQ.

!XJ Same as !XQ.

!ZB Convert a byte value to the ASCII representation of that value in base 10. Only the low byte of
the parameter is used.

!ZW Convert a word value to the ASCII representation of that value in base 10. Only the lower two
bytes of the parameter is used.

!ZL Convert a longword value to the ASCII representation of that value in base 10. Only the lower
four bytes of the parameter is used.

!ZQ Convert a quadword value to the ASCII representation of that value in base 10.

!ZA Same as !ZQ.

UOS RTL Library (LIB$) Manual

12 / 27

!ZI Same as !ZL.

!ZH Same as !ZQ.

!ZJ Same as !ZQ.

Blank-filled Numeric Directives:

Directive Description

!UB Convert an unsigned byte value to the ASCII representation of that value in base 10. Only the
low byte of the parameter is used.

!UW Convert an unsigned word value to the ASCII representation of that value in base 10. Only the
lower two bytes of the parameter are used.

!UL Convert an unsigned longword value to the ASCII representation of that value in base 10. Only
the lower four bytes of the parameter are used.

!UQ Convert an unsigned quadword value to the ASCII representation of that value in base 10.

!UA Same as !UQ.

!UI Same as !UL.

!UH Same as !UQ.

!UJ Same as !UQ.

!SB Convert a signed byte value to the ASCII representation of that value in base 10. Only the low
byte of the parameter is used.

!SW Convert a signed word value to the ASCII representation of that value in base 10. Only the lower
two bytes of the parameter are used.

!SL Convert a signed longword value to the ASCII representation of that value in base 10. Only the
lower four bytes of the parameter are used.

!SQ Convert a signed quadword value to the ASCII representation of that value in base 10.

!SH Same as !SL.

!SJ Same as !SL.

Other Directives:

Directive Description

!/ Inserts a new line (carriage return and linefeed). It takes no parameters.

!_ Inserts a horizontal tab (ASCII 9). It takes no parameters.

!̂ Inserts a form feed. It takes no parameters.

!! Inserts an exclamation point. It takes no parameters

!%S Inserts the letter S if the most recently converted numeric value is not 1. If the character before
the directive is upper case, an upper case S is inserted, otherwise a lowercase s is inserted.

!%T Inserts the system time. The parameter is the datetime stamp. If the parameter is 0, the
current time is inserted.

!%U Same as !UQ.

!%I Converts a UIC to the account name. If an invalid UIC is specified, the directive is treated as
!UQ.

!%D Inserts the system date and time. The parameter is the timestamp. If the parameter is 0, the
current date/time is inserted.

!n%C Conditional. See discussion of conditionals below.

!%E Else portion of conditional. See discussion of conditionals below.

!%F End of conditional. See discussion of conditionals below.

!n< See next directive.

!> The preceeding directive and this one are used together to define an output field that has a
width of n. Within this field are displayed all directives between the !n< and !> directives. The
field is blank-filled on the right to make it n characters wide if necessary. All directives within
this field are left-justified and blank-filled. Note that these can be nested.

!n*c Repeats the character c in the output n times.

!- Reuse the most recently used parameter value.

UOS RTL Library (LIB$) Manual

13 / 27

!+ Skip the next parameter value.

Conditionals
!%nC, !%E, and !%F are used together to insert values depending upon parameter values. This is primarily
for use with plurals. The general format is:
!%nCa!%Eb!%F
If n matches the last parameter value, then a is inserted, otherwise b is inserted. Example:
!ZB !%1Cchild!%Echildren!%F
In this example, if the first parameter is 1, the output would be:
1 child
But if the first parameter is not 1, the output would be:
n children
where "n" is the value of the first parameter.

The following table illustrates how the directives interact with width and filling.

Directive
Type

Default
output
width

When explicit
width is greater
than default

When explicit width is less than default

!BB 8 Right justify and
blank fill

Result truncated on left

!BW 16 Right justify and
blank fill

Result truncated on left

!BL 32 Right justify and
blank fill

Result truncated on left

!BQ 64 Right justify and
blank fill

Result truncated on left

!OB 3 Right justify and
blank fill

Result truncated on left

!OW 6 Right justify and
blank fill

Result truncated on left

!OL 11 Right justify and
blank fill

Result truncated on left

!OQ 22 Right justify and
blank fill

Result truncated on left

!HB 2 Right justify and
blank fill

Result truncated on left

!HW 4 Right justify and
blank fill

Result truncated on left

!HL 8 Right justify and
blank fill

Result truncated on left

!HQ 16 Right justify and
blank fill

Result truncated on left

Unsigned
zero-filled
decimal

As
many
characte
rs as
are
necessa
ry

Right justify and
blank fill

Field completely filled with asterisks (*)

Signed or
unsigned
decimal

As
many
characte
rs as
are
necessa
ry

Right justify and
zero-filled

UOS RTL Library (LIB$) Manual

14 / 27

Strings As
many
characte
rs as in
the
string

Left justify and blank
fill to specified length

Truncate on right

Created with the Personal Edition of HelpNDoc: Create help files for the Qt Help Framework

LIB$GET_FOREIGN

LIB$GET_FOREIGN

Returns the text of the command line that invoked the current program, minus the program's name.

Format
LIB_GET_FOREIGN result {, prompt} {,len} {,flags}

Returns
64-bit integer Status code.

Arguments
result

The address of a SRB structure that defines the location where the command line is to be written, and
the maximum size of that location.

prompt
Optional user-supplied prompt for text that LIB_GET_FOREIGN uses if no command-line text is
available. This is the address of an SRB structure that defines the prompt text. If this is 0 or the prompt
string is null, and there is no command-line text available, a zero-length string is returned.

len
Optional address of where to write the 64-bit length of the returned command line text. This will be the
size of the string actually returned.

flags
The address of a 64-bit integer flags value. If provided, and the low bit is set in the flag, the user is
prompted unconditionally. Otherwise, the user is only prompted if there is no command-line available. If
the prompt is omitted or null, and there is no command-line, a null string is returned.

Description
LIB_GET_FOREIGN returns the contents of the command line that was used to activate the current
image, minus the program name. Optionally, the user can be prompted for data if there is no command
line text available. The service can be called multiple times to retrieve multiple lines of data. Data
returned due to prompting is read from SYS$INPUT. It can be called once to get the command line and
then again to get additional parameters from the user.

The command line is set by the shell when it begins execution of a program.

Condition Values Returned

Code Meaning

SS_NORMA
L

Normal completion.

LIB_INPSTR
TRU

The result buffer was too small to hold the command-line. Only the characters that fit are
returned.

http://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

UOS RTL Library (LIB$) Manual

15 / 27

Created with the Personal Edition of HelpNDoc: Create help files for the Qt Help Framework

LIB$GET_INPUT

LIB$GET_INPUT
Get Command from SYS$INPUT

This function obtains a command from the default input source (SYS$INPUT). Commands read by this
service are added to the command recall buffer.

Format
LIB$GET_RECALL result, prompt, length

Arguments
result

Address of a TSRB structure which points to the buffer to receive the command input.

prompt
Address of a TSRB structure that points to the prompt string.

length
Address of a 64-bit integer that receives the count of bytes read.

Required Privileges
None

Affected Quotas
None

Condition Values Returned

SS$_NORMAL The service completed successfully.

Created with the Personal Edition of HelpNDoc: Full-featured Help generator

LIB$GET_RECALL

LIB$GET_RECALL
Get Command from Recall Buffer

This function obtains a command from the command recall buffer.

Format
LIB$GET_RECALL Index, OutLen, OutBuf

Arguments
Index

The offset of the command to recall. 0 returns the oldest command in the buffer, 1 returns the next-to-
oldest command, and so on. If negative, it indicates an offset from the end of the command buffer. For
instance, -1 returns the most recent (last) command in the buffer, -2 returns the next-most recent
command, and so on.

OutLen
Address of a 64-bit integer that indicates the size of the buffer pointed to by OutBuf. On return it
receives the actual length of the command, in bytes. If the command is larger than the buffer size, only
the specified number of bytes is returned.

OutBuf

http://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
http://www.helpndoc.com/feature-tour

UOS RTL Library (LIB$) Manual

16 / 27

Address of a buffer large enough to hold the command.

Required Privileges
None

Affected Quotas
None

Condition Values Returned

SS$_NORMAL The service completed successfully.

Created with the Personal Edition of HelpNDoc: Easily create EBooks

LIB$GET_RECALL_LENGTH

LIB$GET_RECALL_LENGTH
Get Length of Command in Recall Buffer

This function obtains a command from the command recall buffer.

Format
LIB$GET_RECALL_LENGTH Index, OutLen

Arguments
Index

The offset of the command to recall. 0 returns the oldest command in the buffer, 1 returns the next-to-
oldest command, and so on. If negative, it indicates an offset from the end of the command buffer. For
instance, -1 returns the most recent (last) command in the buffer, -2 returns the next-most recent
command, and so on.

OutLen
Address of a 64-bit integer to receive the size of the command at the indicated offset. If the offset is out
of range, 0 is written to this address.

Required Privileges
None

Affected Quotas
None

Condition Values Returned

SS$_NORMAL The service completed successfully.

Created with the Personal Edition of HelpNDoc: Easy EPub and documentation editor

LIB$POP_RECALL

LIB$POP_RECALL
Pop Command from Recall Buffer

This function deletes the most recent command from the command recall buffer.

Format
LIB$POP_RECALL

Arguments
None.

http://www.helpndoc.com/feature-tour
http://www.helpndoc.com

UOS RTL Library (LIB$) Manual

17 / 27

Required Privileges
None

Affected Quotas
None

Condition Values Returned
None

Created with the Personal Edition of HelpNDoc: Generate EPub eBooks with ease

LIB$PUT_FORMATTED_OUTPUT

LIB$Put_Formatted_Output
Writes HTML formatted output.

This service writes UHTML text to a file, representing it in a way appropriate for the output device. See the
Utility Library Reference Manual for a description of UHTML.

Format
LIB$Put_Formatted_Output file output

Parameters
file

A pointer to a UOS file to which the data will be written.

output
A pointer to an SRB that points to the string to write to the file.

Description
Put_Formatted_Output writes UHTML text to the file in such a way to most closely match the UHTML
formatting on the output device.

Condition codes returned:

Code Meaning

SS_BUFFER
OVF

indicates that the result was larger than the provided buffer

SS_NORMA
L

Successful completion.

Created with the Personal Edition of HelpNDoc: Full-featured Help generator

LIB$RECALL_COUNT

LIB$RECALL_COUNT
Return Length of Recall Buffer

This function returns the number of commands in the command recall buffer.

Format
LIB$RECALL_COUNT

Arguments
None.

Required Privileges

http://www.helpndoc.com/create-epub-ebooks
http://www.helpndoc.com/feature-tour

UOS RTL Library (LIB$) Manual

18 / 27

None

Affected Quotas
None

Condition Values Returned
None

Created with the Personal Edition of HelpNDoc: Full-featured multi-format Help generator

LIB$RUN

LIB$RUN

Executes a program in the context of the current process.

Format
LIB_RUN programname, commandline, flags

Arguments
programname

The address of a SRB that points to the name of the program file to execute. The following rules
determine which program is executed if the path and/or extension are omitted:
If a path isn't specified, the program must exist in the user's execution path.
The first instance of the program found in the execution path is the one that is executed, so if programs
with the specified name exist in multiple directories in the execution path, you must specify the path in
order to execute one that is later in the path.
If a file extension is not provided and multiple matching programs are found in a given directory, the one
executed depends upon the current order of execution for file extensions. If a file with a higher extension
priority exists in the path after a file with a lower extension priority, the one with the higher extension
priority is run.

commandline
The address of a SRB that points to the command line to be passed to the program when execution
begins.

flags
The address of a 64-bit value containing the flags that apply to program execution. The flags are:

Flag Meaning

RUN_ACC
NT

Run with accounting, otherwise program quota usage is not applied to user's account. If not
set, the user must have the ACNT privilege.

RUN_AUT
H

Run with normal authorizations, otherwise run as a logged-out user. If not set, the user
must have the IMPERSONATE privilege.

RUN_DEB
UG

Run the program in the debugger.

RUN_DU
MP

Create a dump file if the program ends abnormally.

Quotas
None for the call, any/all for the running program.

Condition Values Returned

Code Meaning

SS_NORMAL Normal completion.

UOSErr_File_Not_Found No matching program could be found

http://www.helpndoc.com/help-authoring-tool

UOS RTL Library (LIB$) Manual

19 / 27

UOSErr_Infinite_Symbol_
Recursion

Extension priorities (sys$extensions symbol) contains an infinite recursion.

Created with the Personal Edition of HelpNDoc: Free help authoring tool

LIB$SEEK_FILE

LIB$SEEK_FILE
Set File Position

This service sets the current file position of an open file.

Format
LIB$SEEK_FILE handle, position

Arguments
handle

Handle of file to affect.

position
Byte offset of the new file position.

Required Privileges
None

Affected Quotas
None

Condition Values Returned

SS$_NORMAL The service completed successfully.

Created with the Personal Edition of HelpNDoc: Full-featured Help generator

LIB$SPAWN

LIB$SPAWN

Spawns a subprocess.

Format
LIB$SPAWN {command} {,input} {,output} {,flags} {,name} {,pid} {,status} {,eventflag} {,AST} {,ASTP}
{,prompt} {,shell} {,reserved}

Arguments
command

A pointer to an SRB which points to the name of the program to execute in the subprocess. If this
parameter is 0, the default or specified shell is executed in interactive mode. This string can also
contain parameters after the program name in order to pass those parameters to the program.

input
A pointer to an SRB which points to the name of the file to be assigned to sys$input in the subprocess.
If this is 0, the subprocess uses the same sys$input as the calling process.

output
A pointer to an SRB which points to the name of the file to be assigned to sys$output in the
subprocess. If this is 0, the subprocess uses the same sys$output as the calling process.

http://www.helpndoc.com/help-authoring-tool
http://www.helpndoc.com/feature-tour

UOS RTL Library (LIB$) Manual

20 / 27

flags
A pointer to a 64-bit integer containing options for subprocess creation, as follows. If this parameter is 0,
the flags are considered to all be unset.

Mnuemonic Value Description

CLI_M_NOWAIT 1 If set, the calling process continues executing asynchronously.
Otherwise the calling process is blocked until the subprocess finishes.

CLI_M_NOCLISY
M

2 The spawned subprocess does not inherit symbols.

CLI_M_NOLOGN
AM

4 The spawned subprocess does not inherit symbols. This has the same
meaning as CLI_M_NOCLISYM.

CLI_M_NOKEYP
AD

8 The keypad symbols and state are not passed to the subprocess.

CLI_M_NOTIFY 16 A message is broadcast to sys$output when the subprocess completes
or aborts.

CLI_M_NOCONT
ROL

32 No carriage-return/line-feed is prefixed to any prompt string on the
subprocess.

CLI_M_TRUSTE
D

64 Indicates a SPAWN command on behalf of the application. If not set,
captive accounts cannot spawn a subprocess

CLI_M_AUTHPRI
V

128 The subprocess inherits the caller's authorized privileges.

CLI_M_SUBSYS
TEM

256 The spawned process inherits protected subsystem IDs for the duration of
the process creation.

CLI_M_NONRAN
DOM

H1000000
00

A non-random process name prefix is used. See the name parameter for
details.

name
A pointer to an SRB which points to the name to assign to the subprocess. If the specified name is
already in use by another process, an error occurs and the subprocess is not created. If this parameter
is 0, the name of the process will be the user name, an underscore, and a number. Normally a unique
random number is used, but if the CLI_M_NONRANDOM flag is specified, the number will be "1", unless
that process name is in use, in which case "2" is tried, and incremented by 1 until a unique process
name is generated. For instance, if the user is "System", and there are already existing process names
of "System_1", "System_2", and "System_4", then the new process will be named "System_3".

pid
A pointer to a 64-bit integer which receives the PID of the subprocess after it is created. If this parameter
is 0, the process ID is not returned.

status
A pointer to a 64-bit integer which will receive the completion status of the subprocess. This is updated
asynchronously if the the NOWAIT flag is used. If the subprocess completes without error, the result set
to 0. If this parameter is 0, the completion status is not returned.

eventflag
A pointer to a 64-bit integer which contains the event flag to be set when the subprocess completes. If
this parameter is 0, no event flag is set.

AST
A pointer to an AST to call when the subprocess completes. If this is 0, no AST routine is called. AST
routines should be used if NOWAIT is specified in the flags and the calling process needs to know when
the subprocess finishes.

ASTP
A pointer to a 64-bit integer containing the parameter value to pass to the AST routine. This is only
meaningful if an AST address is provided.

UOS RTL Library (LIB$) Manual

21 / 27

prompt
A pointer to an SRB which points to the text to be used as a prompt in the shell of the subprocess.
Depending upon the shell, this may have no effect.

shell
A pointer to an SRB which points to the name of the shell for the subprocess. If not specified, the
default system shell is used.

reserved
This parameter reserved for future use. It is ignored, but 0 should be passed.

Description
This service creates a subprocess. The created subprocess inherits the following attributes from the
calling process, although some of these can be modified by the passed flags:
Process symbols
Default device and directory
Process privileges
Process nondeductible quotas

The subprocess does not inherit process-permanent files nor execution or image context.
The set of authorized privileges in the subprocess is inherited from the caller's current privileges. If the
calling image is installed with elevated privileges, these privileges are not available to the subprocess
until a SETPRV call is performed in the subprocess to enable them. If the calling image is installed with
elevated privileges, it should disable those privileges before the call to LIB_SPAWN unless the
environment of the subprocess is strictly controlled. Otherwise, elevated privileges may accidentally be
made available to the user.

If neither command nor input is specified, command input is taken from the parent process' terminal. If
both command and input are specified, the subprocess first executes command and then reads from
input. If only command is specified, the program is executed, and the subprocess is terminated when
the program exits. If input is specified, the subprocess is terminated by either a LOGOUT procedure or
an end-of-file.

The LOGIN utility is not run and no LOGIN.COM file is executed.

Unless the NOWAIT flags bit is set, the caller's process is put into hibernation until the subprocess
finishes. Because the caller's process hibernates in supervisor mode, any user-mode ASTs queued for
delivery to the caller are not delivered until the caller reawakes. Control can also be restored to the caller
by a suitable call to LIB_ATTACH from the subprocess.

Condition Values Returned
SS_NORMAL Normal completion of service.
SS_DUPLNAM A process name was specified, but a process with that name is currently running.
INVARG A flag outside of the valid values was specified.
INVOPER Invalid operation.

Created with the Personal Edition of HelpNDoc: Easy EBook and documentation generator

LIB$Substitute_Wildcards

LIB$Substitute_Wildcards
Substitute wildcards in a file specification

Returns a file specification substituting wildcards with defaults and values from a non-wildcard specification.

Format
LIB$Substitute_Wildcards source target defaults result length

Arguments

http://www.helpndoc.com

UOS RTL Library (LIB$) Manual

22 / 27

source
The address of an SRB that points to the source file specification.

target
The address of an SRB that points to the target file specification. This is the specification that can
contain wildcards. Note that empty fields are implied "*" wildcards.

defaults
The address of an SRB that points to the default file specification. Any fields missing (null) in the target
specification are filled from this specification before the wildcard substitution is done.

result
The address of an SRB that points to the buffer to receive the resulting file specification. The length
indicates the maximum size of the buffer, in bytes.

length
The address of a 64-bit integer to receive the actual size of the result. If 0, no size is returned.

Description
This service constructs a result file specification from a source specification, a target (containing
wildcards) and a default specification. The default specification is first used to fill any null fields in the
target. Wildcard fields are not filled from the default. Next the source specification is used to fill any
remaining null fields or wildcards in the target. The result is returned to the specificed buffer. If the buffer
is too small to contain the result, as much as will fit is returned and the service returns a
SS_BUFFEROVF condition. Note that null fields that are not specified in any of the three specifications
will be null in the result. This service does not perform any validation of the file specifications' syntax nor
does it check to see if the resulting specification refers to an existing file.

Condition codes returned

Code Meaning

SS_BUFFE
ROVF

Result buffer was not large enough to fit the entire result specification.

SS_NORMA
L

Normal completion of service.

Created with the Personal Edition of HelpNDoc: Write eBooks for the Kindle

LIB$SYS_ASCTIM

LIB$SYS_ASCTIM
Convert Binary Time to ASCII

This function converts a 64-bit internal timestamp to an ASCII string.

Format
LIB$SYS_ASCTIM length, result, timestamp, flags

Arguments
length

Address of where to write the length of the result, in bytes.

result
Address of the SRB structure indicating the address of the buffer to receive the ASCII time.

timestamp
Internal 64-bit UOS timestamp. A negative value indicates a delta time. Otherwise it is considered to

http://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

UOS RTL Library (LIB$) Manual

23 / 27

be an absolute time. If this is 0, the current date and time is returned.

flags
Conversion indicator specifying what values to return.

Value Meaning

0 Date and time

1 Time only

2 Date only

Required Privileges
None

Affected Quotas
None

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The address to receive the time cannot be written to.

Created with the Personal Edition of HelpNDoc: Easily create Qt Help files

LIB$SYS_FILESCAN

LIB$SYS_FILESCAN
Scan File Specification

This function searches a string for a file specification and parses it into its fields.

Format
LIB$SYS_FILESCAN filespec list fldflags auxout retlen

Arguments
filespec

String to be searched. This is the address of an SRB structure that points to the string.

list
Item list specifying which components of the file specification are to be returned. This argument is the
address of the first descriptor in the list. The last descriptor in the list must be all 0's.

fldflgs
The address of where a bitmask is written that indicates which fields of the file specification were
specified. If this value is 0, this is ignored. The fields are indicated by the following flag values:

Symbol name Description

FSCN_V_DEVICE Device name.

FSCN_V_DIRECTORY Directory name.

FSCN_V_NAME File name.

FSCN_V_NODE Node name.

FSCN_V_NODE_ACS Access control string of primary node.

FSCN_V_NODE_PRIMARY Primary (first) node name

FSCN_V_NODE_SECONDA
RY

Secondary (additional) node information

FSCN_V_ROOT Root directory name string

FSCN_V_TYPE File type

FSCN_V_VERSION Version number

http://www.helpndoc.com/feature-tour

UOS RTL Library (LIB$) Manual

24 / 27

auxout
Auxillary output buffer. This argument is the address of an SRB structure which indicates where the
complete file specification (as provided) is written. Any secondary node information is stripped from the
output and quotations are reduced and simplified.
If this value is 0, it is ignored. If provided, the values written to the item list are addresses within this
auxillary buffer.

retlen
Auxillary output buffer length. This is the address of an 8-byte integer where the length of the auxillary
output buffer is written. If this is 0, no length is written.

Descriptors

Byte offset Byte length Description

0 4 Item code

4 4 Length

8 8 Address

Description
The FILESCAN service searches a string for a file specification and parses the fields of that specification.
The length and starting addresses of the fields requested are returned. If a field was requested in the item
list but not found in the file specification, a length and address of 0 are written to the descriptor. The
descriptor list is terminated with a descriptor that has an item code of 0.

The information returned describes the entire contiguous file specification. For example, to extract only the
file name and type from the full string, you can use the address of the file name, for the length of the sum of
the name and type to obtain the full file name. However, FSCN_NODE_PRIMARY and FSCN_NODE_ACS
items contain no double colon (::), so you would have to add 2 to the sum of the lengths of those two fields
to obtain the entire node specification.

FILESCAN does not check all aspects of validity in the specification. For instance, it does not verify that the
node name specified corresponds to a valid node. Nor does it validate the access control string contents.
Nor does it verify the existence of the path or specified file. It treats wildcard characters as any other valid
character. It doesn't validate lengths either. Finally, multiple whitespace characters are not collapsed to a
single space, nor trimmed from the beginning or end of the string. However, spaces, tabs, and delimiting
characters must be enclosed in quotes if they are part of the file name or type, otherwise the character is
treated as a terminator for the specification. Quotes used to indicate a node access control string require
that the node name be enclosed in quotes and thus the quotes delimiting the access control string must be
doubled (""). For example, the node specification:
abcd"efg"
would need to be specified as:
"abcd""efg"""
FILESCAN does not assume default values for missing fields or perform logical name translations.

Here are the item codes that can be used in the passed descriptors:

Code Description

FSCN_DEVICE Returns length and starting address of the device name, including the
colon (:).

FSCN_DIRECTORY Returns the length and starting address of the path, including all
backslashes (\).

FSCN_FILESPEC Returns the length and starting address of the full file specification.

FSCN_NAME Returns the length and starting address of the file name, including no
syntactical elements.

FSCN_NODE Returns the length and starting address of the node, access control
string, and double colon (::).

UOS RTL Library (LIB$) Manual

25 / 27

FSCN_NODE_ACS Returns the length and starting address of the node access control string.

FSCN_NODE_PRIMARY Returns the length and starting address of the primary node name. It
doesn't include the double colon (::) or access control string.

FSCN_NODE_SECONDARY Returns the length and starting address of the secondary node string.

FSCN_ROOT Returns the length and starting address of the root directory of the path,
including backslashes (\).

FSCN_TYPE Returns the length and starting address of the file type, including the
leading dot (.).

FSCN_VERSION Returns the length and starting address of the version, including the
leading semicolon (;).

Required Privileges
None

Affected Quotas
None

Condition Values Returned

SS$_NORMAL The service completed successfully.

SS$_ACCVIO The address to receive the time cannot be written to.

Created with the Personal Edition of HelpNDoc: Full-featured Kindle eBooks generator

LIB$SYS_PARSE

LIB$SYS_PARSE
Parse a File Specification

The PARSE service parses a file specification string and fills in various NAML fields.

Format
LIB$SYS_PARSE fab err suc

Returns
The result of the operation is stored in the FAB_L_STS item in the FAB structure.

Arguments
fab

Pointer to a FAB block whose contents are to be used as arguments for the PARSE call.

err
Address of a user-written routine to be called if there was an error. If 0, no routine is called. The called
routine is assumed to take no parameters and return void.

suc
Address of a user-written routine to be called if there were no errors. If 0, no routine is called. The called
routine is assumed to take no parameters and return void.

Description
This function is automatically called as part of the OPEN, CREATE, and ERASE services. It is also used to
prepare the FAB and NAML blocks for use in the SEARCH service. The following FAB and NAML fields are
potentially read and/or written by this service.

Block Field R/W Description

FAB FAB_L_DNA Read Default file specification string.

FAB FAB_L_DNS Read Default file specification string length, in
bytes.

http://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

UOS RTL Library (LIB$) Manual

26 / 27

FAB FAB_B_FNA Read File specification string address.

FAB FAB_L_FNS Read File specification string address length,
in bytes.

FAB FAB_L_NAM Read Address of NAML block.

FAB FAB_L_STS Write Completion status code.

NAML NAML_B_NOP Read Processing flags. If the
NAML_V_SYNCHK flag is set, only a
syntax check is performed. Otherwise,
the node, device, and path are checked
for validity.

NAML NAML_L_LONG_EXPAND Read Address of output expanded string value.

NAML NAML_L_LONG_EXPAND_ALLOC Read Maximum size of expanded output buffer.

NAML NAML_L_LONG_EXPAND_SIZE Write Length of output expanded string value.

NAML NAML_L_LONG_DEFNAME Read Address of default file specification. If
FAB.FAB_L_DNS is -1, this is used as
the default.

NAML NAML_L_LONG_DEFNAME_SIZE Read Length of default file specification.

NAML NAML_L_LONG_FILENAME Read Address of file specification. If
FAB.FAB_L_FNA is -1, this is used as
the file specification.

NAML NAML_L_LONG_FILENAME_SIZE Read Length of file specification.

NAML NAML_L_LONG_DEV Write Address of device name, or 0 if none.

NAML NAML_L_LONG_DEV_SIZE Write Length of device name.

NAML NAML_L_LONG_DIR Write Address of the path, or 0 if none.

NAML NAML_L_LONG_DIR_SIZE Write Length of the path specification.

NAML NAML_L_LONG_NAME Write Address of the name portion of the file
name, or 0 if none.

NAML NAML_L_LONG_NAME_SIZE Write Length of the name portion of the file
name.

NAML NAML_L_LONG_NODE Write Address of the node name, or 0 if none.

NAML NAML_L_LONG_NODE_SIZE Write Length of the node name.

NAML NAML_L_LONG_TYPE Write Address of the type portion of the file
name, or 0 if none.

NAML NAML_L_LONG_TYPE_SIZE Write Length of the type portion of the file
name.

NAML NAML_L_LONG_VER Write Address of the version portion of the file
name, or 0 if none.

NAML NAML_L_LONG_VER_SIZE Write Length of the version portion of the file
name.

NAML NAML_L_LONG_RESULT_SIZE Write Set to 0.

NAML NAML_W_FID Write Set to 0.

NAML NAML_L_FNB Write Filename flags.

Condition Codes
The following condition values can be returned:

RMS_FAB FAB block has invalid format.

RMS_BLN FAB or NAM block have invalid length(s).

RMS_DNF Directory not found.

Created with the Personal Edition of HelpNDoc: Free Qt Help documentation generator

LIB$SYS_GETMSG

http://www.helpndoc.com

UOS RTL Library (LIB$) Manual

27 / 27

LIB$SYS_GETMSG
Get System Message

This function obtains the text of a message from the system messages file.

Format
LIB$SYS_GETMSG msg, reslen, res, flags, outadr

Arguments
msg

Address of a 64-bit integer containing the ID of the message to retrieve.

reslen
Address of a 64-bit integer where the length of the retrieved text is written.

res
Address of a TSRB structure that points to the buffer to receive the message text.

flags
Flags indicating what text to return.

Bit Meaning

1 Include text of message

2 Include message identifier

4 Include severity indicator

8 Include facility name

outadr
Reserved for future use. Address of a 64-bit integer.

Required Privileges
None

Affected Quotas
None

Condition Values Returned

SS$_NORMAL The service completed successfully.

Created with the Personal Edition of HelpNDoc: Full-featured Kindle eBooks generator

http://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

	Introduction
	Contents
	Preface
	LIB$
	Overview of LIB$
	LIB$ADD_RECALL
	LIB$CLEAR_RECALL
	LIB$CVT_FROM_INTERNAL_TIME
	LIB$CVTIME
	LIB$DAY_OF_WEEK
	LIB$GET_COMMAND
	LIB$Get_Default_File_Protection
	LIB$FAO and LIB$FAOL
	LIB$GET_FOREIGN
	LIB$GET_INPUT
	LIB$GET_RECALL
	LIB$GET_RECALL_LENGTH
	LIB$POP_RECALL
	LIB$PUT_FORMATTED_OUTPUT
	LIB$RECALL_COUNT
	LIB$RUN
	LIB$SEEK_FILE
	LIB$SPAWN
	LIB$Substitute_Wildcards
	LIB$SYS_ASCTIM
	LIB$SYS_FILESCAN
	LIB$SYS_PARSE
	LIB$SYS_GETMSG

